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Final Exam 

Ø  Fri, 24 Apr 2015, 9:00 – 12:00 LAS C 

Ø Closed Book 

Ø  Format similar to midterm 

Ø Will cover whole course, with emphasis on material after 
midterm (maps and hash tables, binary search, loop 
invariants, binary search trees, sorting, graphs) 

Ø We did not cover breadth-first search so you are not 
responsible for this material. 

Ø  I will be away at meetings from Wed Apr 15 – Thurs Apr 
23:  please see TAs for assistance. 
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Suggested Study Strategy 
Ø  Review and understand the slides. 

Ø  Do all of the practice problems provided. 

Ø  Read the textbook, especially where concepts and methods are not 
yet clear to you. 

Ø  Do extra practice problems from the textbook. 

Ø  Review the midterm and solutions for practice writing this kind of 
exam. 

Ø  Practice writing clear, succint pseudocode! 

Ø  Review the assignments 

Ø  See one of the TAs if there is anything that is still not clear. 
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End of Term Review 
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Summary of Topics 

1.  Maps & Hash Tables 

2.  Binary Search & Loop Invariants 

3.  Binary Search Trees 

4.  Sorting 

5.  Graphs 



Last Updated:  14 April 2015 
EECS 2011 
Prof. J. Elder - 5 - 

Summary of Topics 

1.  Maps & Hash Tables 

2.  Binary Search & Loop Invariants 

3.  Binary Search Trees 

4.  Sorting 

5.  Graphs 



Last Updated:  14 April 2015 
EECS 2011 
Prof. J. Elder - 6 - 

Maps 

Ø A map models a searchable collection of key-value 
entries 

Ø  The main operations of a map are for searching, 
inserting, and deleting items 

Ø Multiple entries with the same key are not allowed 

Ø Applications: 
q address book 

q student-record database 
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Performance of a List-Based Map 

Ø Performance: 
q put, get and remove take O(n) time since in the worst case 

(the item is not found) we traverse the entire sequence to 
look for an item with the given key 

Ø  The unsorted list implementation is effective only for 
small maps  
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Hash Tables 

Ø A hash table is a data structure that can be used to 
make map operations faster. 

Ø While worst-case is still O(n), average case is typically 
O(1). 
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Compression Functions  

Ø Division: 
q h2 (y) = y mod N 

q The size N of the hash table is usually chosen to be a prime (on 
the assumption that the differences between hash keys y are 
less likely to be multiples of primes). 

Ø Multiply, Add and Divide (MAD): 
q h2 (y) = [(ay + b) mod p] mod N, where 

² p is a prime number greater than N 

² a and b are integers chosen at random from the interval [0, p – 1], 
with a > 0. 
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Collision Handling  

Ø Collisions occur when different elements are mapped to 
the same cell 

Ø Separate Chaining:   
q Let each cell in the table point to a linked list of entries that map 

there 

q Separate chaining is simple, but requires additional memory 
outside the table 

Ø 

Ø 
Ø 

0 
1 
2 
3 
4 451-229-0004 981-101-0004 

025-612-0001 
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Open Addressing: Linear Probing 

Ø  Open addressing: the colliding 
item is placed in a different cell of 
the table 

Ø  Linear probing handles collisions 
by placing the colliding item in the 
next (circularly) available table cell 

Ø  Each table cell inspected is 
referred to as a “probe” 

Ø  Colliding items lump together, so 
that future collisions cause a longer 
sequence of probes 

Ø  Example: 
q  h(x) = x mod 13 

q  Insert keys 18, 41, 22, 44, 
59, 32, 31, 73, in this order 

                           
0 1 2 3 4 5 6 7 8 9 10 11 12 
    41     18 44 59 32 22 31 73   
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Open Addressing:  Double Hashing 
Ø  Double hashing is an alternative open addressing method that uses 

a secondary hash function h’(k) in addition to the primary hash 
function h(x).  

Ø  Suppose that the primary hashing i=h(k) leads to a collision. 

Ø  We then iteratively probe the locations 
 (i + jh’(k)) mod N  for j = 0,  1, … , N - 1 

Ø  The secondary hash function h’(k) cannot have zero values 

Ø  N is typically chosen to be prime. 

Ø  Common choice of secondary hash function h’(k):   
q  h’(k) = q - k mod q, where 

² q < N 

² q is a prime 

Ø  The possible values for h’(k) are 
  1, 2, … , q 
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Summary of Topics 
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4.  Sorting 
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Ordered Maps and Dictionaries 
Ø  If keys obey a total order relation, can represent a map or 

dictionary as an ordered search table stored in an array. 

Ø   Can then support a fast find(k) using binary search. 
q  at each step, the number of candidate items is halved 

q  terminates after a logarithmic number of steps 

q  Example: find(7) 

 

1 3 4 5 7 8 9 11 14 16 18 19 

1 3 4 5 7 8 9 11 14 16 18 19 

1 3 4 5 7 8 9 11 14 16 18 19 

1 3 4 5 7 8 9 11 14 16 18 19 

0 

0 

0 

0 

m l h 

m l h 

m l h 

l=m =h 
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Loop Invariants 

Ø Binary search can be implemented as an iterative 
algorithm (it could also be done recursively). 

Ø  Loop Invariant:  An assertion about the current state 
useful for designing, analyzing and proving the 
correctness of iterative algorithms. 
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From the Pre-Conditions on the input instance 
we must establish the loop invariant. 

Establishing Loop Invariant 



Last Updated:  14 April 2015 
EECS 2011 
Prof. J. Elder - 17 - 

Maintain Loop Invariant 
•  By Induction the computation will 
always be in a safe location. 

(0)

, ( )

, ( ) ( 1)

S

i S i

i S i S i

⇒ ⎫
⎪⎪⇒∀ ⇒⎬
⎪
⎪⇒∀ ⇒ + ⎭
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Ending The Algorithm 
Ø  Define Exit Condition 

Ø  Termination: With sufficient progress,  

     the exit condition will be met. 

Ø  When we exit, we know 
q  exit condition is true 

q  loop invariant is true 

    from these we must establish   

    the post conditions. 

Exit 

Exit 

0 km Exit 
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Binary Search Trees 

Ø  Insertion 

Ø Deletion 

Ø AVL Trees 

Ø Splay Trees 
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38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 

Binary Search Tree 

All nodes in left subtree  ≤  Any node  ≤ All nodes in right subtree 
 

≤ ≤ ≤ 
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Search:  Define Step 
Ø Cut sub-tree in half. 
Ø Determine which half the key would be in. 

Ø Keep that half. 

 

key 17 
38 

25 

17 

4 21 

31 

28 35 

51 

42 

40 49 

63 

55 71 

If key < root, 
then key is  
in left half. 

If key > root, 
then key is  
in right half. 

If key = root, 
then key is  
found 
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Insertion (For Dictionary) 
Ø  To perform operation insert(k, o), we search for key k (using 

TreeSearch) 

Ø Suppose k is not already in the tree, and let w be the leaf 
reached by the search 

Ø We insert k at node w and expand w into an internal node 

Ø Example: insert 5 
6 

9 2 

4 1 8 

6 

9 2 

4 1 8 

5 

<	



>	



>	



w 

w 
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Insertion 
Ø Suppose k is already in the tree, at node v. 

Ø We continue the downward search through v, and let w be 
the leaf reached by the search 

Ø Note that it would be correct to go either left or right at v.  
We go left by convention. 

Ø We insert k at node w and expand w into an internal node 

Ø Example: insert 6 
6 

9 2 

4 1 8 

6 

9 2 

4 1 8 

6 

<	



>	



>	



w 

w 
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Deletion 
Ø  To perform operation remove(k), we search for key k 

Ø Suppose key k is in the tree, and let v be the node storing k 

Ø  If node v has a leaf child w, we remove v and w from the tree 
with operation removeExternal(w), which removes w and its 
parent 

Ø Example: remove 4 
6 

9 2 

4 1 8 

5 

v 
w 

6 

9 2 

5 1 8 

<	



>	
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Deletion (cont.) 
Ø  Now consider the case where the key k to be removed is stored at a 

node v whose children are both internal 
q  we find the internal node w that follows v in an inorder traversal 

q  we copy the entry stored at w into node v 

q  we remove node w and its left child z (which must be a leaf) by means of 
operation removeExternal(z) 

Ø  Example: remove 3 

3 

1 

8 

6 9 

5 

v 

w 

z 

2 
5 

1 

8 

6 9 

v 

2 
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Performance 
Ø Consider a dictionary with n items implemented by means of 

a binary search tree of height h 
q  the space used is O(n) 

q methods find, insert and remove take O(h) time 

Ø  The height h is O(n) in the worst case and O(log n) in the 
best case 

Ø  It is thus worthwhile to balance the tree (next topic)! 



Last Updated:  14 April 2015 
EECS 2011 
Prof. J. Elder - 28 - 

AVL Trees 

Ø AVL trees are balanced. 

Ø An AVL Tree is a binary search tree in which the 
heights of siblings can differ by at most 1. 

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

height 

0 

0 0 

0 0 
0 0 

0 0 
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Insertion 

Ø  Imbalance may occur at any ancestor of the inserted node. 

Insert(2) 

7 

4 

3 

0 

1 

2 

height = 3 

8 

0 0 

1 

0 

2 

2 

0 

1 0 

0 

5 

0 

1 

0 

7 

4 

3 

3 

height = 4 

8 

0 0 

1 

5 

0 

1 

0 

Problem! 
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Insertion: Rebalancing Strategy 
Ø Step 1:  Search 

q Starting at the inserted node, traverse toward 
the root until an imbalance is discovered. 

0 

2 

2 

0 

1 

7 

4 

3 

3 

height = 4 

8 

0 0 

1 

5 

0 

1 

0 

Problem! 
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Insertion:  Rebalancing Strategy 
Ø Step 2:  Repair 

q The repair strategy is called trinode 
restructuring. 

q 3 nodes x, y and z are distinguished: 
² z = the parent of the high sibling 

² y = the high sibling 

² x = the high child of the high sibling 

q We can now think of the subtree 
rooted at z as consisting of these 3 
nodes plus their 4 subtrees 0 

2 

2 

0 

1 

7 

4 

3 

3 

height = 4 

8 

0 0 

1 

5 

0 

1 

0 

Problem! 
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Insertion: Trinode Restructuring Example 

x 

z 

y 

height 
 = h 

T0 T1 

T2 

T3 
h-1 h-3 

h-2 

one is h-3 & 
one is h-4 

h-3 

x z 

y 

T0 T1 T2 T3 

h-1 

h-3 

h-2 

one is h-3 & 
one is h-4 

h-3 

h-2 

Restructure 

Note that y is the middle value. 
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Removal 

Ø  Imbalance may occur at an ancestor of the removed node. 

Remove(8) 

7 

4 

3 

0 

1 

2 

height = 3 

8 

0 0 

1 

0 

1 

0 

5 

0 

1 

0 

7 

4 

3 

2 

height = 3 

0 

5 

0 

1 

0 

Problem! 

0 
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Removal: Rebalancing Strategy 
Ø Step 1:  Search 

q Starting at the location of the removed node, 
traverse toward the root until an imbalance is 
discovered. 

0 

1 

0 

7 

4 

3 

2 

height = 3 

0 

5 

0 

1 

0 

Problem! 
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Removal:  Rebalancing Strategy 
Ø Step 2:  Repair 

q We again use trinode restructuring. 

q 3 nodes x, y and z are distinguished: 
² z = the parent of the high sibling 

² y = the high sibling 

² x = the high child of the high sibling (if 
children are equally high, keep chain 
linear) 

0 

1 

0 

7 

4 

3 

2 

height = 3 

0 

5 

0 

1 

0 

Problem! 
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Removal: Trinode Restructuring - Case 1 

x 

z 

y 

height 
 = h 

T0 T1 

T2 

T3 
h-1 h-3 

h-2 

h-3 or h-3 & h-4 

h-2 
or 
h-3 

x z 

y 

T0 T1 T2 T3 

h 
or 
h-1 

h-3 

h-2 

h-3 or h-3 & h-4 

h-2 
or 
h-3 

h-1 
or 
h-2 

Restructure 

Note that y is the middle value. 
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Removal:  Rebalancing Strategy 
Ø  Step 2:  Repair 

q  Unfortunately, trinode restructuring may 
reduce the height of the subtree, causing 
another imbalance further up the tree. 

q  Thus this search and repair process must 
be repeated until we reach the root. 
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Splay Trees 

Ø Self-balancing BST 

Ø  Invented by Daniel Sleator and Bob Tarjan 

Ø Allows quick access to recently accessed 
elements  

Ø Bad:  worst-case O(n) 

Ø Good:  average (amortized) case O(log n) 

Ø Often perform better than other BSTs in 
practice 

D. Sleator 

R. Tarjan 
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Splaying 

Ø Splaying is an operation performed on a node that 
iteratively moves the node to the root of the tree. 

Ø  In splay trees, each BST operation (find, insert, remove) 
is augmented with a splay operation. 

Ø  In this way, recently searched and inserted elements are 
near the top of the tree, for quick access. 
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Zig-Zig 
Ø Performed when the node x forms a linear chain with its 

parent and grandparent. 
q  i.e., right-right or left-left 

y 

x 

T1 T2 

T3 

z 

T4 

zig-zig 

y 

z 

T4 T3 

T2 

x 

T1 
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Zig-Zag 
Ø Performed when the node x forms a non-linear chain 

with its parent and grandparent 
q  i.e., right-left or left-right 

zig-zag 
y 

x 

T2 T3 

T4 

z 

T1 

y 

x 

T2 T3 T4 

z 

T1 
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Zig 
Ø Performed when the node x has no grandparent 

q  i.e., its parent is the root 

zig 

x 

w 

T1 T2 

T3 

y 

T4 
y 

x 

T2 T3 T4 

w 

T1 



Last Updated:  14 April 2015 
EECS 2011 
Prof. J. Elder - 43 - 

Summary of Topics 

1.  Maps & Hash Tables 

2.  Binary Search & Loop Invariants 

3.  Binary Search Trees 

4.  Sorting 

5.  Graphs 



Last Updated:  14 April 2015 
EECS 2011 
Prof. J. Elder - 44 - 

Sorting Algorithms 
Ø Comparison Sorting 

q Selection Sort 

q Bubble Sort 

q  Insertion Sort 

q Merge Sort 

q Heap Sort 

q Quick Sort 

Ø  Linear Sorting 
q Counting Sort 

q Radix Sort 

q Bucket Sort 
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Comparison Sorts 

Ø Comparison Sort algorithms sort the input by successive 
comparison of pairs of input elements. 

Ø Comparison Sort algorithms are very general:  they 
make no assumptions about the values of the input 
elements. 

4 3 7 11 2 2 1 3 5 

  e.g.,3 ≤11?
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Sorting Algorithms and Memory 

Ø Some algorithms sort by swapping elements within the 
input array 

Ø Such algorithms are said to sort in place, and require 
only O(1) additional memory. 

Ø Other algorithms require allocation of an output array into 
which values are copied. 

Ø  These algorithms do not sort in place, and require O(n) 
additional memory. 

4 3 7 11 2 2 1 3 5 

swap 
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Stable Sort 

Ø A sorting algorithm is said to be stable if the ordering of 
identical keys in the input is preserved in the output. 

Ø  The stable sort property is important, for example, when 
entries with identical keys are already ordered by 
another criterion. 

Ø  (Remember that stored with each key is a record 
containing some useful information.) 

4 3 7 11 2 2 1 3 5 

1 2 2 3 3 4 5 7 11 
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Summary of Comparison Sorts 

Algorithm Best 
Case 

Worst 
Case 

Average 
Case 

In 
Place 

Stable Comments 

Selection n2 
 

n2 
 

Yes Yes 

Bubble n 
 

n2 
 

Yes Yes 

Insertion n n2 
 

Yes Yes Good if often almost sorted 

Merge n log n n log n No Yes Good for very large datasets that 
require swapping to disk 

Heap n log n n log n Yes No Best if guaranteed n log n required 

Quick n log n n2 n log n Yes No Usually fastest in practice 



Last Updated:  14 April 2015 
EECS 2011 
Prof. J. Elder - 49 - 

Comparison Sort:  Decision Trees 
Ø  For a 3-element array, there are 6 external nodes. 

Ø  For an n-element array, there are     external nodes.   n!
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Comparison Sort 

Ø  To store n! external nodes, a decision tree must have a 
height of at least    

Ø Worst-case time is equal to the height of the binary 
decision tree. 

  

Thus T(n)∈Ω logn!( )
where logn! = log i

i=1

n

∑ ≥ log n / 2⎢⎣ ⎥⎦
i=1

n / 2⎢⎣ ⎥⎦

∑ ∈Ω(n logn)

Thus T(n)∈Ω(n logn)

Thus MergeSort & HeapSort are asymptotically optimal. 

  
logn!⎡⎢ ⎤⎥
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Linear Sorts? 

Comparison sorts are very general, but are ( log )n nΩ

 Faster sorting may be possible if we can constrain the nature of the input.
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CountingSort 

Input: 
Output: 
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18 

Value v: 

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0 

3 2 1 0 
17 14 5 0 Location of next record  

with digit v. 

1 

Algorithm: Go through the records in order 
                   putting them where they go. 
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Sort wrt i+1st  
digit. 

2 24 
1 25 
2 25  
3 25  
3 33  
1 34 
3 34  
1 43 
2 43  
3 44 

Is sorted wrt  
first i digits. 

1 25  
1 34  
1 43  

2 24 
2 25  
2 43 

3 25  
3 33  
3 34  
3 44 

Is sorted wrt  
first i+1 digits. 

i+1 

These are in the  
correct order  
because sorted 
wrt high order digit  

RadixSort     
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Sort wrt i+1st  
digit. 

2 24 
1 25 
2 25  
3 25  
3 33  
1 34 
3 34  
1 43 
2 43  
3 44 

Is sorted wrt  
first i digits. 

1 25  
1 34  
1 43  

2 24 
2 25  
2 43 

3 25  
3 33  
3 34  
3 44 

i+1 

These are in the  
correct order  
because was sorted & 
stable sort left sorted 

Is sorted wrt  
first i+1 digits. 

RadixSort    
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Bucket Sort 
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Summary of Topics 

1.  Maps & Hash Tables 

2.  Binary Search & Loop Invariants 

3.  Binary Search Trees 

4.  Sorting 

5.  Graphs 
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Graphs 

Ø Definitions & Properties 

Ø  Implementations 

Ø Depth-First Search 
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Properties 

Notation 
   |V|  number of vertices 

   |E|  number of edges 

deg(v)  degree of vertex v 

Property 1 

Σv deg(v) = 2|E| 

Proof: each edge is counted 
twice 

Property 2 
In an undirected graph with no 

self-loops and no multiple 
edges 

   |E| ≤ |V| (|V| - 1)/2 

Proof: each vertex has degree 
at most (|V| – 1) 

Example 
n  |V| = 4 
n  |E| = 6 
n  deg(v) = 3 

  
A :  E ≤ V (V −1)
Q:  What is the bound for a digraph? 
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DFS Algorithm Pattern 

  

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G] 
color[u] = BLACK //initialize vertex

for each vertex u∈V [G] 
if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

  

total work 
=  θ(V )
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DFS Algorithm Pattern 

  

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ←  RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v ] = BLACK
DFS-Visit(v)

colour [u]←GRAY
  

total work 
=  |Adj[v]|

v∈V
∑ = θ(E)

  

Thus running time = θ(V + E)
(assuming adjacency list structure)
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Other Variants of Depth-First Search 

Ø  The DFS Pattern can also be used to  
q Compute a forest of spanning trees (one for each call to DFS-

visit) encoded in a predecessor list π[u] 

q Label edges in the graph according to their role in the search 
(see textbook) 
² Tree edges, traversed to an undiscovered vertex 

² Forward edges, traversed to a descendent vertex on the current 
spanning tree 

² Back edges, traversed to an ancestor vertex on the current 
spanning tree 

² Cross edges, traversed to a vertex that has already been 
discovered, but is not an ancestor or a descendent 
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Summary of Topics 

1.  Maps & Hash Tables 

2.  Binary Search & Loop Invariants 

3.  Binary Search Trees 

4.  Sorting 

5.  Graphs 


