
Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 1 -

Final Exam

Ø  Fri, 24 Apr 2015, 9:00 – 12:00 LAS C

Ø Closed Book

Ø  Format similar to midterm

Ø Will cover whole course, with emphasis on material after
midterm (maps and hash tables, binary search, loop
invariants, binary search trees, sorting, graphs)

Ø We did not cover breadth-first search so you are not
responsible for this material.

Ø  I will be away at meetings from Wed Apr 15 – Thurs Apr
23: please see TAs for assistance.

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 2 -

Suggested Study Strategy
Ø  Review and understand the slides.

Ø  Do all of the practice problems provided.

Ø  Read the textbook, especially where concepts and methods are not
yet clear to you.

Ø  Do extra practice problems from the textbook.

Ø  Review the midterm and solutions for practice writing this kind of
exam.

Ø  Practice writing clear, succint pseudocode!

Ø  Review the assignments

Ø  See one of the TAs if there is anything that is still not clear.

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 3 -

End of Term Review

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 4 -

Summary of Topics

1.  Maps & Hash Tables

2.  Binary Search & Loop Invariants

3.  Binary Search Trees

4.  Sorting

5.  Graphs

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 5 -

Summary of Topics

1.  Maps & Hash Tables

2.  Binary Search & Loop Invariants

3.  Binary Search Trees

4.  Sorting

5.  Graphs

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 6 -

Maps

Ø A map models a searchable collection of key-value
entries

Ø  The main operations of a map are for searching,
inserting, and deleting items

Ø Multiple entries with the same key are not allowed

Ø Applications:
q address book

q student-record database

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 7 -

Performance of a List-Based Map

Ø Performance:
q put, get and remove take O(n) time since in the worst case

(the item is not found) we traverse the entire sequence to
look for an item with the given key

Ø  The unsorted list implementation is effective only for
small maps

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 8 -

Hash Tables

Ø A hash table is a data structure that can be used to
make map operations faster.

Ø While worst-case is still O(n), average case is typically
O(1).

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 9 -

Compression Functions

Ø Division:
q h2 (y) = y mod N

q The size N of the hash table is usually chosen to be a prime (on
the assumption that the differences between hash keys y are
less likely to be multiples of primes).

Ø Multiply, Add and Divide (MAD):
q h2 (y) = [(ay + b) mod p] mod N, where

² p is a prime number greater than N

² a and b are integers chosen at random from the interval [0, p – 1],
with a > 0.

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 10 -

Collision Handling

Ø Collisions occur when different elements are mapped to
the same cell

Ø Separate Chaining:
q Let each cell in the table point to a linked list of entries that map

there

q Separate chaining is simple, but requires additional memory
outside the table

Ø

Ø
Ø

0
1
2
3
4 451-229-0004 981-101-0004

025-612-0001

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 11 -

Open Addressing: Linear Probing

Ø  Open addressing: the colliding
item is placed in a different cell of
the table

Ø  Linear probing handles collisions
by placing the colliding item in the
next (circularly) available table cell

Ø  Each table cell inspected is
referred to as a “probe”

Ø  Colliding items lump together, so
that future collisions cause a longer
sequence of probes

Ø  Example:
q  h(x) = x mod 13

q  Insert keys 18, 41, 22, 44,
59, 32, 31, 73, in this order

0 1 2 3 4 5 6 7 8 9 10 11 12
 41 18 44 59 32 22 31 73

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 12 -

Open Addressing: Double Hashing
Ø  Double hashing is an alternative open addressing method that uses

a secondary hash function h’(k) in addition to the primary hash
function h(x).

Ø  Suppose that the primary hashing i=h(k) leads to a collision.

Ø  We then iteratively probe the locations
 (i + jh’(k)) mod N for j = 0, 1, … , N - 1

Ø  The secondary hash function h’(k) cannot have zero values

Ø  N is typically chosen to be prime.

Ø  Common choice of secondary hash function h’(k):
q  h’(k) = q - k mod q, where

² q < N

² q is a prime

Ø  The possible values for h’(k) are
 1, 2, … , q

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 13 -

Summary of Topics

1.  Maps & Hash Tables

2.  Binary Search & Loop Invariants

3.  Binary Search Trees

4.  Sorting

5.  Graphs

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 14 -

Ordered Maps and Dictionaries
Ø  If keys obey a total order relation, can represent a map or

dictionary as an ordered search table stored in an array.

Ø  Can then support a fast find(k) using binary search.
q  at each step, the number of candidate items is halved

q  terminates after a logarithmic number of steps

q  Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

m l h

m l h

m l h

l=m =h

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 15 -

Loop Invariants

Ø Binary search can be implemented as an iterative
algorithm (it could also be done recursively).

Ø  Loop Invariant: An assertion about the current state
useful for designing, analyzing and proving the
correctness of iterative algorithms.

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 16 -

From the Pre-Conditions on the input instance
we must establish the loop invariant.

Establishing Loop Invariant

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 17 -

Maintain Loop Invariant
•  By Induction the computation will
always be in a safe location.

(0)

, ()

, () (1)

S

i S i

i S i S i

⇒ ⎫
⎪⎪⇒∀ ⇒⎬
⎪
⎪⇒∀ ⇒ + ⎭

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 18 -

Ending The Algorithm
Ø  Define Exit Condition

Ø  Termination: With sufficient progress,

 the exit condition will be met.

Ø  When we exit, we know
q  exit condition is true

q  loop invariant is true

 from these we must establish

 the post conditions.

Exit

Exit

0 km Exit

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 19 -

Summary of Topics

1.  Maps & Hash Tables

2.  Binary Search & Loop Invariants

3.  Binary Search Trees

4.  Sorting

5.  Graphs

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 20 -

Binary Search Trees

Ø  Insertion

Ø Deletion

Ø AVL Trees

Ø Splay Trees

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 21 -

38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

Binary Search Tree

All nodes in left subtree ≤ Any node ≤ All nodes in right subtree

≤ ≤ ≤

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 22 -

Search: Define Step
Ø Cut sub-tree in half.
Ø Determine which half the key would be in.

Ø Keep that half.

key 17
38

25

17

4 21

31

28 35

51

42

40 49

63

55 71

If key < root,
then key is
in left half.

If key > root,
then key is
in right half.

If key = root,
then key is
found

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 23 -

Insertion (For Dictionary)
Ø  To perform operation insert(k, o), we search for key k (using

TreeSearch)

Ø Suppose k is not already in the tree, and let w be the leaf
reached by the search

Ø We insert k at node w and expand w into an internal node

Ø Example: insert 5
6

9 2

4 1 8

6

9 2

4 1 8

5

<	

>	

>	

w

w

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 24 -

Insertion
Ø Suppose k is already in the tree, at node v.

Ø We continue the downward search through v, and let w be
the leaf reached by the search

Ø Note that it would be correct to go either left or right at v.
We go left by convention.

Ø We insert k at node w and expand w into an internal node

Ø Example: insert 6
6

9 2

4 1 8

6

9 2

4 1 8

6

<	

>	

>	

w

w

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 25 -

Deletion
Ø  To perform operation remove(k), we search for key k

Ø Suppose key k is in the tree, and let v be the node storing k

Ø  If node v has a leaf child w, we remove v and w from the tree
with operation removeExternal(w), which removes w and its
parent

Ø Example: remove 4
6

9 2

4 1 8

5

v
w

6

9 2

5 1 8

<	

>	

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 26 -

Deletion (cont.)
Ø  Now consider the case where the key k to be removed is stored at a

node v whose children are both internal
q  we find the internal node w that follows v in an inorder traversal

q  we copy the entry stored at w into node v

q  we remove node w and its left child z (which must be a leaf) by means of
operation removeExternal(z)

Ø  Example: remove 3

3

1

8

6 9

5

v

w

z

2
5

1

8

6 9

v

2

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 27 -

Performance
Ø Consider a dictionary with n items implemented by means of

a binary search tree of height h
q  the space used is O(n)

q methods find, insert and remove take O(h) time

Ø  The height h is O(n) in the worst case and O(log n) in the
best case

Ø  It is thus worthwhile to balance the tree (next topic)!

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 28 -

AVL Trees

Ø AVL trees are balanced.

Ø An AVL Tree is a binary search tree in which the
heights of siblings can differ by at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

height

0

0 0

0 0
0 0

0 0

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 29 -

Insertion

Ø  Imbalance may occur at any ancestor of the inserted node.

Insert(2)

7

4

3

0

1

2

height = 3

8

0 0

1

0

2

2

0

1 0

0

5

0

1

0

7

4

3

3

height = 4

8

0 0

1

5

0

1

0

Problem!

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 30 -

Insertion: Rebalancing Strategy
Ø Step 1: Search

q Starting at the inserted node, traverse toward
the root until an imbalance is discovered.

0

2

2

0

1

7

4

3

3

height = 4

8

0 0

1

5

0

1

0

Problem!

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 31 -

Insertion: Rebalancing Strategy
Ø Step 2: Repair

q The repair strategy is called trinode
restructuring.

q 3 nodes x, y and z are distinguished:
² z = the parent of the high sibling

² y = the high sibling

² x = the high child of the high sibling

q We can now think of the subtree
rooted at z as consisting of these 3
nodes plus their 4 subtrees 0

2

2

0

1

7

4

3

3

height = 4

8

0 0

1

5

0

1

0

Problem!

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 32 -

Insertion: Trinode Restructuring Example

x

z

y

height
 = h

T0 T1

T2

T3
h-1 h-3

h-2

one is h-3 &
one is h-4

h-3

x z

y

T0 T1 T2 T3

h-1

h-3

h-2

one is h-3 &
one is h-4

h-3

h-2

Restructure

Note that y is the middle value.

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 33 -

Removal

Ø  Imbalance may occur at an ancestor of the removed node.

Remove(8)

7

4

3

0

1

2

height = 3

8

0 0

1

0

1

0

5

0

1

0

7

4

3

2

height = 3

0

5

0

1

0

Problem!

0

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 34 -

Removal: Rebalancing Strategy
Ø Step 1: Search

q Starting at the location of the removed node,
traverse toward the root until an imbalance is
discovered.

0

1

0

7

4

3

2

height = 3

0

5

0

1

0

Problem!

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 35 -

Removal: Rebalancing Strategy
Ø Step 2: Repair

q We again use trinode restructuring.

q 3 nodes x, y and z are distinguished:
² z = the parent of the high sibling

² y = the high sibling

² x = the high child of the high sibling (if
children are equally high, keep chain
linear)

0

1

0

7

4

3

2

height = 3

0

5

0

1

0

Problem!

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 36 -

Removal: Trinode Restructuring - Case 1

x

z

y

height
 = h

T0 T1

T2

T3
h-1 h-3

h-2

h-3 or h-3 & h-4

h-2
or
h-3

x z

y

T0 T1 T2 T3

h
or
h-1

h-3

h-2

h-3 or h-3 & h-4

h-2
or
h-3

h-1
or
h-2

Restructure

Note that y is the middle value.

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 37 -

Removal: Rebalancing Strategy
Ø  Step 2: Repair

q  Unfortunately, trinode restructuring may
reduce the height of the subtree, causing
another imbalance further up the tree.

q  Thus this search and repair process must
be repeated until we reach the root.

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 38 -

Splay Trees

Ø Self-balancing BST

Ø  Invented by Daniel Sleator and Bob Tarjan

Ø Allows quick access to recently accessed
elements

Ø Bad: worst-case O(n)

Ø Good: average (amortized) case O(log n)

Ø Often perform better than other BSTs in
practice

D. Sleator

R. Tarjan

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 39 -

Splaying

Ø Splaying is an operation performed on a node that
iteratively moves the node to the root of the tree.

Ø  In splay trees, each BST operation (find, insert, remove)
is augmented with a splay operation.

Ø  In this way, recently searched and inserted elements are
near the top of the tree, for quick access.

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 40 -

Zig-Zig
Ø Performed when the node x forms a linear chain with its

parent and grandparent.
q  i.e., right-right or left-left

y

x

T1 T2

T3

z

T4

zig-zig

y

z

T4 T3

T2

x

T1

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 41 -

Zig-Zag
Ø Performed when the node x forms a non-linear chain

with its parent and grandparent
q  i.e., right-left or left-right

zig-zag
y

x

T2 T3

T4

z

T1

y

x

T2 T3 T4

z

T1

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 42 -

Zig
Ø Performed when the node x has no grandparent

q  i.e., its parent is the root

zig

x

w

T1 T2

T3

y

T4
y

x

T2 T3 T4

w

T1

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 43 -

Summary of Topics

1.  Maps & Hash Tables

2.  Binary Search & Loop Invariants

3.  Binary Search Trees

4.  Sorting

5.  Graphs

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 44 -

Sorting Algorithms
Ø Comparison Sorting

q Selection Sort

q Bubble Sort

q  Insertion Sort

q Merge Sort

q Heap Sort

q Quick Sort

Ø  Linear Sorting
q Counting Sort

q Radix Sort

q Bucket Sort

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 45 -

Comparison Sorts

Ø Comparison Sort algorithms sort the input by successive
comparison of pairs of input elements.

Ø Comparison Sort algorithms are very general: they
make no assumptions about the values of the input
elements.

4 3 7 11 2 2 1 3 5

 e.g.,3 ≤11?

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 46 -

Sorting Algorithms and Memory

Ø Some algorithms sort by swapping elements within the
input array

Ø Such algorithms are said to sort in place, and require
only O(1) additional memory.

Ø Other algorithms require allocation of an output array into
which values are copied.

Ø  These algorithms do not sort in place, and require O(n)
additional memory.

4 3 7 11 2 2 1 3 5

swap

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 47 -

Stable Sort

Ø A sorting algorithm is said to be stable if the ordering of
identical keys in the input is preserved in the output.

Ø  The stable sort property is important, for example, when
entries with identical keys are already ordered by
another criterion.

Ø  (Remember that stored with each key is a record
containing some useful information.)

4 3 7 11 2 2 1 3 5

1 2 2 3 3 4 5 7 11

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 48 -

Summary of Comparison Sorts

Algorithm Best
Case

Worst
Case

Average
Case

In
Place

Stable Comments

Selection n2

n2

Yes Yes

Bubble n

n2

Yes Yes

Insertion n n2

Yes Yes Good if often almost sorted

Merge n log n n log n No Yes Good for very large datasets that
require swapping to disk

Heap n log n n log n Yes No Best if guaranteed n log n required

Quick n log n n2 n log n Yes No Usually fastest in practice

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 49 -

Comparison Sort: Decision Trees
Ø  For a 3-element array, there are 6 external nodes.

Ø  For an n-element array, there are external nodes. n!

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 50 -

Comparison Sort

Ø  To store n! external nodes, a decision tree must have a
height of at least

Ø Worst-case time is equal to the height of the binary
decision tree.

Thus T(n)∈Ω logn!()
where logn! = log i

i=1

n

∑ ≥ log n / 2⎢⎣ ⎥⎦
i=1

n / 2⎢⎣ ⎥⎦

∑ ∈Ω(n logn)

Thus T(n)∈Ω(n logn)

Thus MergeSort & HeapSort are asymptotically optimal.

logn!⎡⎢ ⎤⎥

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 51 -

Linear Sorts?

Comparison sorts are very general, but are (log)n nΩ

 Faster sorting may be possible if we can constrain the nature of the input.

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 52 -

CountingSort

Input:
Output:
Index: 11 10 9 8 7 6 5 4 3 2 1 0 12 13 14 15 16 17 18

Value v:

1 0 0 1 3 1 1 3 1 0 2 1 0 1 1 2 2 1 0

3 2 1 0
17 14 5 0 Location of next record

with digit v.

1

Algorithm: Go through the records in order
 putting them where they go.

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 53 -

Sort wrt i+1st
digit.

2 24
1 25
2 25
3 25
3 33
1 34
3 34
1 43
2 43
3 44

Is sorted wrt
first i digits.

1 25
1 34
1 43

2 24
2 25
2 43

3 25
3 33
3 34
3 44

Is sorted wrt
first i+1 digits.

i+1

These are in the
correct order
because sorted
wrt high order digit

RadixSort

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 54 -

Sort wrt i+1st
digit.

2 24
1 25
2 25
3 25
3 33
1 34
3 34
1 43
2 43
3 44

Is sorted wrt
first i digits.

1 25
1 34
1 43

2 24
2 25
2 43

3 25
3 33
3 34
3 44

i+1

These are in the
correct order
because was sorted &
stable sort left sorted

Is sorted wrt
first i+1 digits.

RadixSort

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 55 -

Bucket Sort

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 56 -

Summary of Topics

1.  Maps & Hash Tables

2.  Binary Search & Loop Invariants

3.  Binary Search Trees

4.  Sorting

5.  Graphs

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 57 -

Graphs

Ø Definitions & Properties

Ø  Implementations

Ø Depth-First Search

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 58 -

Properties

Notation
 |V| number of vertices

 |E| number of edges

deg(v) degree of vertex v

Property 1

Σv deg(v) = 2|E|

Proof: each edge is counted
twice

Property 2
In an undirected graph with no

self-loops and no multiple
edges

 |E| ≤ |V| (|V| - 1)/2

Proof: each vertex has degree
at most (|V| – 1)

Example
n  |V| = 4
n  |E| = 6
n  deg(v) = 3

A : E ≤ V (V −1)
Q: What is the bound for a digraph?

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 59 -

DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited

for each vertex u∈V [G]
color[u] = BLACK //initialize vertex

for each vertex u∈V [G]
if color[u] = BLACK //as yet unexplored

DFS-Visit(u)

total work
= θ(V)

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 60 -

DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed

colour[u] ← RED
for each v ∈Adj[u] //explore edge (u,v)

if color[v] = BLACK
DFS-Visit(v)

colour [u]←GRAY

total work
= |Adj[v]|

v∈V
∑ = θ(E)

Thus running time = θ(V + E)
(assuming adjacency list structure)

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 61 -

Other Variants of Depth-First Search

Ø  The DFS Pattern can also be used to
q Compute a forest of spanning trees (one for each call to DFS-

visit) encoded in a predecessor list π[u]

q Label edges in the graph according to their role in the search
(see textbook)
² Tree edges, traversed to an undiscovered vertex

² Forward edges, traversed to a descendent vertex on the current
spanning tree

² Back edges, traversed to an ancestor vertex on the current
spanning tree

² Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent

Last Updated: 14 April 2015
EECS 2011
Prof. J. Elder - 62 -

Summary of Topics

1.  Maps & Hash Tables

2.  Binary Search & Loop Invariants

3.  Binary Search Trees

4.  Sorting

5.  Graphs

